Journal Article

Direct evidence for the critical role of NFAT3 in benzo[<i>a</i>]pyrene diol-epoxide-induced cell transformation through mediation of inflammatory cytokine TNF induction in mouse epidermal Cl41 cells

Weiming Ouyang, Yu Hu, Jingxia Li, Min Ding, Yongju Lu, Dongyun Zhang, Yan Yan, Lun Song, Qingshan Qu, Dhimant Desai, Shantu Amin and Chuanshu Huang

in Carcinogenesis

Volume 28, issue 10, pages 2218-2226
Published in print October 2007 | ISSN: 0143-3334
Published online May 2007 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgm115
Direct evidence for the critical role of NFAT3 in benzo[a]pyrene diol-epoxide-induced cell transformation through mediation of inflammatory cytokine TNF induction in mouse epidermal Cl41 cells

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Nuclear factor of activated T cell (NFAT)-3 is a member of the transcription factor NFAT family, which has been demonstrated to be responsible for the up-regulation of the pro-inflammatory cytokine tumor necrosis factor (TNF) in the immune system. Our most recent studies have also shown that TNF is able to induce cell transformation in mouse epidermal Cl41 cells by induction of cyclooxygenase-2 (COX-2) expression. To provide direct evidence for NFAT3 in the environmental carcinogen-caused carcinogenic effect, (±)-benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), an ultimate environmental carcinogen metabolized from benzo[a]pyrene, was utilized. We found that exposure of Cl41 cells to B[a]PDE was able to induce cell transformation in Cl41 cells, while specific knock-down of NFAT3 resulted in the dramatic inhibition of this cell transformation. The tumorigenicity of B[a]PDE-caused transformed cells was confirmed in nude mice, whereas the tumor formation of B[a]PDE-treated NFAT3 small interference RNA (siRNA) knock-down cells was significantly reduced. Further studies showed that the role of NFAT3 in B[a]PDE-caused cell transformation was mediated by up-regulation of its downstream targeted gene TNF. This conclusion was based on the findings that inhibition of NFAT3 activation by either FK506 or NFAT3 siRNA dramatically down-regulated the TNF induction upon B[a]PDE exposure, and that knock-down of TNF by its specific siRNA also led to abrogation of B[a]PDE-induced cell transformation in Cl41 cells and their tumorigenicity in nude mice. Collectively, these results provide direct evidence for the important role of NFAT3 activation in B[a]PDE-induced cell transformation by up-regulation of TNF expression in mouse epidermal Cl41 cells, further suggesting that B[a]PDE may exert its tumor promotion effect on skin carcinogenesis, at least partially, by inducing TNF expression.

Journal Article.  7451 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.