Journal Article

Associations between cigarette smoking and mitochondrial DNA abnormalities in buccal cells

Duanjun Tan, David S. Goerlitz, Ramona G. Dumitrescu, Dingfen Han, Françoise Seillier-Moiseiwitsch, Stephanie M. Spernak, Roy Anthony Orden, Jinguo Chen, Radoslav Goldman and Peter G. Shields

in Carcinogenesis

Volume 29, issue 6, pages 1170-1177
Published in print June 2008 | ISSN: 0143-3334
Published online February 2008 | e-ISSN: 1460-2180 | DOI:

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics


Show Summary Details


DNA alterations in mitochondria are believed to play a role in carcinogenesis and are found in smoking-related cancers. We sought to replicate earlier findings for the association of smoking with increased mitochondrial DNA (mtDNA) content in buccal cells and further hypothesized that there would be an increased number of somatic mtDNA mutations in smokers. Buccal cells and blood lymphocytes were studied from 42 healthy smokers and 30 non-smokers. Temporal temperature gradient electrophoresis screening and sequencing was used to identify mtDNA mutations. The relative mtDNA content was determined by real-time polymerase chain reaction. Assuming that mtDNA in lymphocytes represents the inherited sequence, it was found that 31% of smokers harbored at least one somatic mtDNA mutation in buccal cells with a total of 39 point mutations and 8 short deletions/insertions. In contrast, only 23% of non-smokers possessed mutations with a total of 10 point mutations and no insertions/deletions detected. mtDNA somatic mutation density was higher in smokers (0.68/10 000 bp per person) than in non-smokers (0.2/10 000 bp per person). There was a statistically significant difference in the pattern of homoplasmy and heteroplasmy mutation changes between smokers and non-smokers. Whereas non-smokers had the most mutations in D-loop region (70%), smokers had mutations in both messenger RNA encoding gene (36%) and D-loop region (49%). The mean ratio of buccal cells to lymphocytes of mtDNA content in smokers was increased (2.81) when compared with non-smokers (0.46). These results indicate that cigarette smoke exposure affects mtDNA in buccal cells of smokers. Additional studies are needed to determine if mitochondrial mutation assays provide new or complementary information for estimating cigarette smoke exposure at the cellular level or as a cancer risk biomarker.

Journal Article.  5501 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.