Journal Article

Phosphoaspirin (MDC-43), a novel benzyl ester of aspirin, inhibits the growth of human cancer cell lines more potently than aspirin: a redox-dependent effect

Wenping Zhao, Gerardo G. Mackenzie, Onika T. Murray, Zhiquan Zhang and Basil Rigas

in Carcinogenesis

Volume 30, issue 3, pages 512-519
Published in print March 2009 | ISSN: 0143-3334
Published online January 2009 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgp015
Phosphoaspirin (MDC-43), a novel benzyl ester of aspirin, inhibits the growth of human cancer cell lines more potently than aspirin: a redox-dependent effect

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Aspirin is chemopreventive against colon and probably other cancers, but this effect is relatively weak and its chronic administration to humans is associated with significant side effects. Because of these limitations, extensive effort has been exerted to improve the pharmacological properties of aspirin. We have determined the anticancer activity and mechanisms of action of the novel para positional isomer of phosphoaspirin [P-ASA; MDC-43; 4-((diethoxyphosphoryloxy)methyl)phenyl 2-acetoxybenzoate]. P-ASA inhibited the growth of 10 human cancer cell lines originating from colon, lung, liver, pancreas and breast, at least 18- to 144-fold more potently than conventional aspirin. P-ASA achieved this effect by modulating cell kinetics; compared with controls, P-ASA reduced cell proliferation by up to 68%, increased apoptosis 5.5-fold and blocked cell cycle progression in the G2/M phase. P-ASA increased intracellular levels of reactive oxygen species (ROS), depleted glutathione levels and modulated cell signaling predominantly through the mitogen-activated protein kinase (p38 and c-jun N-terminal kinase), cyclooxygenase (COX) and nuclear factor-kappa B pathways. P-ASA targeted the mitochondria, increasing mitochondrial superoxide anion levels; this effect on ROS led to collapsed mitochondrial membrane potential and triggered the intrinsic apoptotic pathway. The antioxidant N-acetyl cysteine abrogated the cell growth inhibitory and signaling effects of P-ASA, underscoring the centrality of ROS in its mechanism of action. Our results, establishing P-ASA as a potent inhibitor of the growth of several human cancer cell lines, suggest that it may possess broad anticancer properties. We conclude that the novel P-ASA is a promising anticancer agent, which merits further evaluation.

Journal Article.  5372 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.