Journal Article

Kalopanaxsaponin A inhibits PMA-induced invasion by reducing matrix metalloproteinase-9 via PI3K/Akt- and PKCδ-mediated signaling in MCF-7 human breast cancer cells

Sun Kyu Park, Young Sun Hwang, Kwang-Kyun Park, Hee-Juhn Park, Jeong Yeon Seo and Won-Yoon Chung

in Carcinogenesis

Volume 30, issue 7, pages 1225-1233
Published in print July 2009 | ISSN: 0143-3334
Published online May 2009 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgp111
Kalopanaxsaponin A inhibits PMA-induced invasion by reducing matrix metalloproteinase-9 via PI3K/Akt- and PKCδ-mediated signaling in MCF-7 human breast cancer cells

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of breast cancers. We investigated the inhibitory effect of kalopanaxsaponin A (KPS-A) on cell invasion and MMP-9 activation in phorbol 12-myristate 13-acetate (PMA)-treated MCF-7 human breast cancer cells. KPS-A inhibited PMA-induced cell proliferation and invasion. PMA-induced cell invasion was blocked in the presence of a primary antibody of MMP-9, and KPS-A suppressed the increased expression and/or secretion of MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1. Using specific inhibitors, we confirmed that PMA-induced cell invasion and MMP-9 expression is primarily regulated by nuclear factor-kappa B (NF-κB) activation via phosphatidylinositol 3-kinase (PI3K)/Akt and activator protein-1 (AP-1) activation via extracellular signal-regulated kinase (ERK)1/2. KPS-A decreased PMA-induced transcriptional activation of NF-κB and AP-1 and inhibited PMA-induced phosphorylation of ERK1/2 and Akt. Treatment with the protein kinase C (PKC)δ inhibitor rottlerin caused a marked decrease in PMA-induced MMP-9 secretion and cell invasion, as well as ERK/AP-1 activation, and KPS-A reduced PMA-induced membrane localization of PKCδ. Furthermore, oral administration of KPS-A led to a substantial decrease in tumor volume and expression of proliferating cell nuclear antigen, MMP-9, TIMP-1 and PKCδ in mice with MCF-7 breast cancer xenografts in the presence of 17β-estradiol. These results suggest that KPS-A inhibits PMA-induced invasion by reducing MMP-9 activation, mainly via the PI3K/Akt/NF-κB and PKCδ/ERK/AP-1 pathways in MCF-7 cells and blocks tumor growth and MMP-9-mediated invasiveness in mice with breast carcinoma. Therefore, KPS-A may be a promising anti-invasive agent with the advantage of oral dosing.

Journal Article.  6124 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.