Journal Article

Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-κB activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of IKKβ as a potential target

Pil-Soon Son, Sin-Aye Park, Hye-Kyung Na, Dae-Myung Jue, Sanghee Kim and Young-Joon Surh

in Carcinogenesis

Volume 31, issue 8, pages 1442-1449
Published in print August 2010 | ISSN: 0143-3334
Published online June 2010 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgq099
Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-κB activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of IKKβ as a potential target

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

There are multiple lines of evidence supporting that chronic inflammation is linked to carcinogenesis. Nuclear factor-κB (NF-κB), a major redox-sensitive transcription factor responsible for the induction of a wide array of pro-inflammatory genes, is frequently overactivated in many tumors. Moreover, constitutive activation of IκB kinase (IKK), a key regulator of NF-κB signaling, has been implicated in inflammation-associated tumorigenesis. Piceatannol (trans-3,4,3′,5′-tetrahydroxystilbene; PIC) derived from grapes, rhubarb and sugarcane exhibits immunosuppressive and antitumorigenic activities in several cell lines, but the underlying mechanisms are poorly understood. In the present study, we found that PIC inhibited migration and anchorage-independent growth of human mammary epithelial cells (MCF-10A) treated with the prototypic tumor promoter, 12-O-tetradecanoylphorbol-13-aceate (TPA). PIC treatment suppressed the TPA-induced activation of NF-κB and expression of cyclooxygenase-2 (COX-2) in MCF-10A cells. We speculate that an electrophilic quinone formed as a consequence of oxidation of PIC bearing the catechol moiety may directly interact with critical cysteine thiols of IKKβ, thereby inhibiting its catalytic activity. In support of this speculation, the reducing agent dithiothreitol abrogated the inhibitory effects of PIC on TPA-induced activation of NF-κB signaling and expression of COX-2. In addition, the inhibitory effects of PIC on NF-κB activation and COX-2 induction were blunted in cells expressing mutant IKKβ (C179A) in which cysteine 179 was replaced by alanine. In conclusion, our results show that direct modification of IKKβ by PIC, presumably at the cysteine 179 residue, blocks NF-κB activation signaling and COX-2 induction in TPA-treated MCF-10A cells and also migration and transformation of these cells.

Journal Article.  4410 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.