Journal Article

Breast cancer stem cells: treatment resistance and therapeutic opportunities

Fares Al-Ejeh, Chanel E. Smart, Brian J. Morrison, Georgia Chenevix-Trench, J. Alejandro López, Sunil R. Lakhani, Michael P. Brown and Kum Kum Khanna

in Carcinogenesis

Volume 32, issue 5, pages 650-658
Published in print May 2011 | ISSN: 0143-3334
Published online February 2011 | e-ISSN: 1460-2180 | DOI:
Breast cancer stem cells: treatment resistance and therapeutic opportunities

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics


Show Summary Details


The clinical and pathologic heterogeneity of human breast cancer has long been recognized. Now, molecular profiling has enriched our understanding of breast cancer heterogeneity and yielded new prognostic and predictive information. Despite recent therapeutic advances, including the HER2-specific agent, trastuzumab, locoregional and systemic disease recurrence remain an ever-present threat to the health and well being of breast cancer survivors. By definition, disease recurrence originates from residual treatment-resistant cells, which regenerate at least the initial breast cancer phenotype. The discovery of the normal breast stem cell has reignited interest in the identity and properties of breast cancer stem-like cells and the relationship of these cells to the repopulating ability of treatment-resistant cells. The cancer stem cell model of breast cancer development contrasts with the clonal evolution model, whereas the mixed model draws on features of both. Although the origin and identity of breast cancer stem-like cells is contentious, treatment-resistant cells survive and propagate only because aberrant and potentially druggable signaling pathways are recruited. As a means to increase the rates of breast cancer cure, several approaches to specific targeting of the treatment-resistant cell population exist and include methods for addressing the problem of radioresistance in particular.

Journal Article.  7773 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.