Journal Article

Prevention of carcinogenesis and inhibition of breast cancer tumor burden by dietary stearate

Chuanyu Li, Xiangmin Zhao, Eric C. Toline, Gene P. Siegal, Lynda M. Evans, Arig Ibrahim-Hashim, Renee A. Desmond and Robert W. Hardy

in Carcinogenesis

Volume 32, issue 8, pages 1251-1258
Published in print August 2011 | ISSN: 0143-3334
Published online May 2011 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgr092
Prevention of carcinogenesis and inhibition of breast cancer tumor burden by dietary stearate

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Previous studies have shown that stearate (C18:0), a dietary long-chain saturated fatty acid, inhibits breast cancer cell neoplastic progression; however, little is known about the mechanism modulating these processes. We demonstrate that stearate, at physiological concentrations, inhibits cell cycle progression in human breast cancer cells at both the G1 and G2 phases. Stearate also increases cell cycle inhibitor p21CIP1/WAF1 and p27KIP1 levels and concomitantly decreases cyclin-dependent kinase 2 (Cdk2) phosphorylation. Our data also show that stearate induces Ras– guanosine triphosphate formation and causes increased phosphorylation of extracellular signal-regulated kinase (pERK). The MEK1 inhibitor, PD98059, reversed stearate-induced p21CIP1/WAF1 upregulation, but only partially restored stearate-induced dephosphorylation of Cdk2. The Ras/mitogen-activated protein kinase/ERK pathway has been linked to cell cycle regulation but generally in a positive way. Interestingly, we found that stearate inhibits both Rho activation and expression in vitro. In addition, constitutively active RhoC reversed stearate-induced upregulation of p27KIP1, providing further evidence of Rho involvement. To test the effect of stearate in vivo, we used the N-Nitroso-N-methylurea rat breast cancer carcinogen model. We found that dietary stearate reduces the incidence of carcinogen-induced mammary cancer and reduces tumor burden. Importantly, mammary tumor cells from rats on a stearate diet had reduced expression of RhoA and B as well as total Rho compared with a low-fat diet. Overall, these data indicate that stearate inhibits breast cancer cell proliferation by inhibiting key check points in the cell cycle as well as Rho expression in vitro and in vivo and inhibits tumor burden and carcinogen-induced mammary cancer in vivo.

Journal Article.  6683 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.