Journal Article

TAZ antagonizes the WWP1-mediated KLF5 degradation and promotes breast cell proliferation and tumorigenesis

Dong Zhao, Xu Zhi, Zhongmei Zhou and Ceshi Chen

in Carcinogenesis

Volume 33, issue 1, pages 59-67
Published in print January 2012 | ISSN: 0143-3334
Published online October 2011 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgr242
TAZ antagonizes the WWP1-mediated KLF5 degradation and promotes breast cell proliferation and tumorigenesis

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

Krüppel-like factor 5 (KLF5) is a PY motif-containing transcription factor promoting breast cell proliferation. The KLF5 protein is rapidly degraded through the proteasome after ubiquitination by E3 ubiquitin ligases, such as WWP1 and SCFFbw7. In this study, we demonstrated that a transcriptional co-activator with the PDZ-binding motif (TAZ) upregulated the KLF5 expression through antagonizing the WWP1-, but not Fbw7-, mediated KLF5 ubiquitination and degradation. TAZ interacted with KLF5 through the WW domain of TAZ and the PY motif of KLF5, which is the binding site for WWP1. TAZ inhibited WWP1–KLF5 protein interaction and WWP1-mediated KLF5 ubiquitination and degradation in a WW domain-dependent manner. Overexpression of TAZ upregulated the protein levels of KLF5 and FGF-BP, which is a well-established KLF5 target gene. In addition, depletion of TAZ in both 184A1 and HCC1937 breast cells downregulated protein levels of KLF5 and FGF-BP and inhibited cell growth. Furthermore, stable depletion of either TAZ or KLF5 significantly suppressed HCC1937 xenograft growth in immunodeficient mice. Knockdown of LATS1, a TAZ upstream inhibitory kinase, up-regulated the protein levels of KLF5 and FGF-BP in 184A1 and promoted cell growth through TAZ. Finally, both KLF5 and TAZ were co-expressed in a subset of estrogen receptor α-negative breast cell lines. These results, for the first time, suggest that TAZ promotes breast cell growth partially through protecting KLF5 from WWP1-mediated degradation and enhancing KLF5′s activities.

Journal Article.  4959 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.