Journal Article

MicroRNA-1826 directly targets beta-catenin (CTNNB1) and MEK1 (MAP2K1) in VHL-inactivated renal cancer

Hiroshi Hirata, Yuji Hinoda, Koji Ueno, Koichi Nakajima, Nobuhisa Ishii and Rajvir Dahiya

in Carcinogenesis

Volume 33, issue 3, pages 501-508
Published in print March 2012 | ISSN: 0143-3334
Published online December 2011 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgr302
MicroRNA-1826 directly targets beta-catenin (CTNNB1) and MEK1 (MAP2K1) in VHL-inactivated renal cancer

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

The aim of this project is to identify new therapeutic microRNAs (miRNAs) for von Hippel-Lindau (VHL)-inactivated renal cancer cells. We initially identified several potential miRNAs targeting CTNNB1 and MEK1 using several targets scan algorithms. Only miR-1826 was found to target CTNNB1 and MEK1. Therefore, we focused on miRNA-1826 and performed 3′ untranslated region (UTR) luciferase assay, functional analyses and association study between miR-1826 expression and renal cancer patient outcomes. miR-1826 expression was significantly lower in renal cancer tissues compared with non-neoplastic areas and lower expression was significantly associated with overall shorter survival and earlier recurrence after radical nephrectomy. Following miR-1826 transfection, 3′ UTR luciferase activity and protein expression of beta-catenin and MEK1 were significantly downregulated in renal cancer cells. Introduction of miR-1826 also inhibited renal cancer cell proliferation, invasion and migration. Additionally, miR-1826 promoted apoptosis and G1 arrest in VHL-inactivated renal cancer cells. Knockdowns of CTNNB1 and MEK1 by small interfering RNAs reproduced the tumor-suppressive effect of miR-1826. Our data suggest that the miR-1826 plays an important role as a tumor suppressor by downregulating beta-catenin and MEK1 in VHL-inactivated renal cancers.

Journal Article.  5296 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.