Journal Article

A transcriptomics-based <i>in vitro</i> assay for predicting chemical genotoxicity <i>in vivo</i>

C. Magkoufopoulou, S.M.H. Claessen, M. Tsamou, D.G.J. Jennen, J.C.S. Kleinjans and J.H.M. van Delft

in Carcinogenesis

Volume 33, issue 7, pages 1421-1429
Published in print July 2012 | ISSN: 0143-3334
Published online May 2012 | e-ISSN: 1460-2180 | DOI:
A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics


Show Summary Details


The lack of accurate in vitro assays for predicting in vivo toxicity of chemicals together with new legislations demanding replacement and reduction of animal testing has triggered the development of alternative methods. This study aimed at developing a transcriptomics-based in vitro prediction assay for in vivo genotoxicity. Transcriptomics changes induced in the human liver cell line HepG2 by 34 compounds after treatment for 12, 24, and 48h were used for the selection of gene-sets that are capable of discriminating between in vivo genotoxins (GTX) and in vivo nongenotoxins (NGTX). By combining transcriptomics with publicly available results for these chemicals from standard in vitro genotoxicity studies, we developed several prediction models. These models were validated by using an additional set of 28 chemicals. The best prediction was achieved after stratification of chemicals according to results from the Ames bacterial gene mutation assay prior to transcriptomics evaluation after 24h of treatment. A total of 33 genes were selected for discriminating GTX from NGTX for Ames-positive chemicals and 22 for Ames-negative chemicals. Overall, this method resulted in 89% accuracy and 91% specificity, thereby clearly outperforming the standard in vitro test battery. Transcription factor network analysis revealed HNF3a, HNF4a, HNF6, androgen receptor, and SP1 as main factors regulating the expression of classifiers for Ames-positive chemicals. Thus, the classical bacterial gene mutation assay in combination with in vitro transcriptomics in HepG2 is proposed as an upgraded in vitro approach for predicting in vivo genotoxicity of chemicals holding a great promise for reducing animal experimentations on genotoxicity.

Journal Article.  6238 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.