Journal Article

The rebel angel: mutant p53 as the driving oncogene in breast cancer

Dawid Walerych, Marco Napoli, Licio Collavin and Giannino Del Sal

in Carcinogenesis

Volume 33, issue 11, pages 2007-2017
Published in print November 2012 | ISSN: 0143-3334
Published online July 2012 | e-ISSN: 1460-2180 | DOI:

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics


Show Summary Details


Breast cancer is the most frequent invasive tumor diagnosed in women, causing over 400 000 deaths yearly worldwide. Like other tumors, it is a disease with a complex, heterogeneous genetic and biochemical background. No single genomic or metabolic condition can be regarded as decisive for its formation and progression. However, a few key players can be pointed out and among them is the TP53 tumor suppressor gene, commonly mutated in breast cancer. In particular, TP53 mutations are exceptionally frequent and apparently among the key driving factors in triple negative breast cancer —the most aggressive breast cancer subgroup—whose management still represents a clinical challenge. The majority of TP53 mutations result in the substitution of single aminoacids in the central region of the p53 protein, generating a spectrum of variants (’mutant p53s’, for short). These mutants lose the normal p53 oncosuppressive functions to various extents but can also acquire oncogenic properties by gain-of-function mechanisms. This review discusses the molecular processes translating gene mutations to the pathologic consequences of mutant p53 tumorigenic activity, reconciling cell and animal models with clinical outcomes in breast cancer. Existing and speculative therapeutic methods targeting mutant p53 are also discussed, taking into account the overlap of mutant and wild-type p53 regulatory mechanisms and the crosstalk between mutant p53 and other oncogenic pathways in breast cancer. The studies described here concern breast cancer models and patients—unless it is indicated otherwise and justified by the importance of data obtained in other models.

Journal Article.  10337 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.