Journal Article

Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC

Ranjan Preet, Purusottam Mohapatra, Dipon Das, Shakti R. Satapathy, Tathagata Choudhuri, Michael D. Wyatt and Chanakya N. Kundu

in Carcinogenesis

Volume 34, issue 2, pages 277-286
Published in print February 2013 | ISSN: 0143-3334
Published online November 2012 | e-ISSN: 1460-2180 | DOI: http://dx.doi.org/10.1093/carcin/bgs351
Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC

More Like This

Show all results sharing this subject:

  • Clinical Cytogenetics and Molecular Genetics

GO

Show Summary Details

Preview

We previously reported that quinacrine (QC) has anticancer activity against breast cancer cells. Here, we examine the mechanism of action of QC and its ability to inhibit Wnt-TCF signaling in two independent breast cancer cell lines. QC altered Wnt-TCF signaling components by increasing the levels of adenomatous polyposis coli (APC), DAB2, GSK-3β and axin and decreasing the levels of β-catenin, p-GSK3β (ser 9) and CK1. QC also reduced the activity of the Wnt transcription factor TCF/LEF and its downstream targets cyclin D1 and c-MYC. Using a luciferase-based Wnt-TCF transcription factor assay, it was shown that APC levels were inversely associated with TCF/LEF activity. Induction of apoptosis and DNA damage was observed after treatment with QC, which was associated with increased expression of APC. The effects induced by QC depend on APC because the inhibition of Wnt-TCF signaling by QC is lost in APC-knockdown cells, and consequently, the extent of apoptosis and DNA damage caused by QC is reduced compared with parental cells. Because we previously showed that QC inhibits topoisomerase, we examined the effect of another topoisomerase inhibitor, etoposide, on Wnt signaling. Interestingly, etoposide treatment also reduced TCF/LEF activity, β-catenin and cyclin D1 levels commensurate with induction of DNA damage and apoptosis. Lycopene, a plant-derived antioxidant, synergistically increased QC activity and inhibited Wnt-TCF signaling in cancer cells without affecting the MCF-10A normal breast cell line. Collectively, the data suggest that QC-mediated Wnt-TCF signal inhibition depends on APC and that the addition of lycopene synergistically increases QC anticancer activity.

Journal Article.  7114 words.  Illustrated.

Subjects: Clinical Cytogenetics and Molecular Genetics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.