Journal Article

Impact of Extracellularity on the Evolutionary Rate of Mammalian Proteins

Ben-Yang Liao, Meng-Pin Weng and Jianzhi Zhang

in Genome Biology and Evolution

Published on behalf of Society for Molecular Biology and Evolution

Volume 2, issue , pages 39-43
Published in print January 2010 |
Published online January 2010 | e-ISSN: 1759-6653 | DOI:

More Like This

Show all results sharing these subjects:

  • Bioinformatics and Computational Biology
  • Evolutionary Biology
  • Genetics and Genomics


Show Summary Details


It is of fundamental importance to understand the determinants of the rate of protein evolution. Eukaryotic extracellular proteins are known to evolve faster than intracellular proteins. Although this rate difference appears to be due to the lower essentiality of extracellular proteins than intracellular proteins in yeast, we here show that, in mammals, the impact of extracellularity is independent from the impact of gene essentiality. Our partial correlation analysis indicated that the impact of extracellularity on mammalian protein evolutionary rate is also independent from those of tissue-specificity, expression level, gene compactness, and the number of protein–protein interactions and, surprisingly, is the strongest among all the factors we examined. Similar results were also found from principal component regression analysis. Our findings suggest that different rules govern the pace of protein sequence evolution in mammals and yeasts.

Keywords: evolutionary rate; subcellular localization; gene essentiality; gene expression level; mammal; yeast

Journal Article.  2440 words.  Illustrated.

Subjects: Bioinformatics and Computational Biology ; Evolutionary Biology ; Genetics and Genomics

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.