Journal Article

Changes in Gene Expression Associated with Reproductive Maturation in Wild Female Baboons

Courtney C. Babbitt, Jenny Tung, Gregory A. Wray and Susan C. Alberts

in Genome Biology and Evolution

Published on behalf of Society for Molecular Biology and Evolution

Volume 4, issue 2, pages 102-109
Published in print January 2012 |
Published online December 2011 | e-ISSN: 1759-6653 | DOI: http://dx.doi.org/10.1093/gbe/evr134

More Like This

Show all results sharing these subjects:

  • Bioinformatics and Computational Biology
  • Evolutionary Biology
  • Genetics and Genomics

GO

Show Summary Details

Preview

Changes in gene expression during development play an important role in shaping morphological and behavioral differences, including between humans and nonhuman primates. Although many of the most striking developmental changes occur during early development, reproductive maturation represents another critical window in primate life history. However, this process is difficult to study at the molecular level in natural primate populations. Here, we took advantage of ovarian samples made available through an unusual episode of human–wildlife conflict to identify genes that are important in this process. Specifically, we used RNA sequencing (RNA-Seq) to compare genome-wide gene expression patterns in the ovarian tissue of juvenile and adult female baboons from Amboseli National Park, Kenya. We combined this information with prior evidence of selection occurring on two primate lineages (human and chimpanzee). We found that in cases in which genes were both differentially expressed over the course of ovarian maturation and also linked to lineage-specific selection this selective signature was much more likely to occur in regulatory regions than in coding regions. These results suggest that adaptive change in the development of the primate ovary may be largely driven at the mechanistic level by selection on gene regulation, potentially in relationship to the physiology or timing of female reproductive maturation.

Keywords: RNA-Seq; gene expression; wild primate population

Journal Article.  4195 words.  Illustrated.

Subjects: Bioinformatics and Computational Biology ; Evolutionary Biology ; Genetics and Genomics

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.