Journal Article

Differential gene expression in a cell culture model of <i>SOD1</i>-related familial motor neurone disease

Janine Kirby (née Tomkins), Fiona M. Menzies, Mark R. Cookson, Katherine Bushby and Pamela J. Shaw

in Human Molecular Genetics

Volume 11, issue 17, pages 2061-2075
Published in print August 2002 | ISSN: 0964-6906
Published online August 2002 | e-ISSN: 1460-2083 | DOI:
Differential gene expression in a cell culture model of SOD1-related familial motor neurone disease

Show Summary Details


Motor neurone disease is caused by mutations in Cu/Zn superoxide dismutase (SOD1) in 15–20% of familial cases, due to a toxic gain of function by the mutant enzyme. However, the underlying mechanism of SOD1-mediated neurodegeneration remains uncertain. By investigating alterations in gene expression in the presence of mutant Cu/Zn SOD, we aimed to identify pathways that contribute to motor neurone injury and cell death. Using a cellular model of familial motor neurone disease, the motor neuronal cell line NSC34 was stably transfected with either normal or mutant (G37R, G93A, I113T) SOD1 cDNAs, and the effect of the presence of these proteins on gene expression was analysed. This model allowed gene expression changes to be studied specifically in cells with a motor neurone phenotype, without interference from genes expressed by glia, astrocytes and other cell types located in the central nervous system. Using a commercially available cDNA membrane array, we investigated the expression levels of 588 genes from key biological pathways. Gene expression was studied in the cells under both basal culture conditions and following oxidative stress induced by serum withdrawal. Twenty-nine differentially expressed genes were identified, 7 of which were specifically downregulated in the presence of the mutant Cu/Zn SOD protein, and whose expression was further studied by real-time PCR. Presence of the mutant Cu/Zn SOD was confirmed to lead to a decrease in expression of KIF3B, a kinesin-like protein, which forms part of the KIF3 molecular motor. c-Fes, thought to be involved in intracellular vesicle transport was also decreased, further implicating the involvement of vesicular trafficking as a mode of action for mutant Cu/Zn SOD. In addition, a decrease was confirmed in ICAM1, a response in part due to the increased expression of SOD1, and decreased Bag1 expression was confirmed in two of the three mutant cell lines, providing further support for the involvement of apoptosis in SOD1-associated motor neurone death.

Journal Article.  12362 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.