Journal Article

Mutations in the <i>RPGR</i> gene cause X-linked cone dystrophy

Zhenglin Yang, Neal S. Peachey, Darius M. Moshfeghi, Sukanya Thirumalaichary, Lou Chorich, Yin Y. Shugart, Keke Fan and Kang Zhang

in Human Molecular Genetics

Volume 11, issue 5, pages 605-611
Published in print March 2002 | ISSN: 0964-6906
Published online March 2002 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/11.5.605
Mutations in the RPGR gene cause X-linked cone dystrophy

Show Summary Details

Preview

X-linked cone dystrophy is a type of hereditary retinal degeneration characterized by a progressive dysfunction of the day vision or photopic (cone) system with preservation of night vision or scotopic (rod) function. The disease presents with a triad of photophobia, loss of color vision and reduced central vision. This phenotype is distinct from retinitis pigmentosa (RP) in which there are prominent night and peripheral vision disturbances. X-linked cone dystrophy is a genetically heterogeneous disorder, with linkage to loci on Xp11.4–Xp21.1 (COD1, OMIM 304020) and Xq27 (COD2, OMIM 303800). COD1 maps to a region that harbors the RPGR gene, mutations in which account for >70% of patients with X-linked RP. The majority of these mutations reside in one purine-rich exon, ORF15, encoding 567 amino acids with a repetitive domain rich in glutamic acid residues. We mapped two families with X-linked cone dystrophy to the COD1 locus and identified two distinct mutations in ORF15 in the RPGR gene (ORF15+1343_1344delGG and ORF15+694_708del15) leading to a frame-shift and premature termination of translation in one case and a deletion of five amino acids in another. Consistent with expression of RPGR in rods and cones, our results show that mutations in RPGR, in addition to X-linked RP, can also cause cone-specific degeneration.

Journal Article.  3594 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.