Journal Article

Destabilization of CAG Trinucleotide Repeat Tracts by Mismatch Repair Mutations in Yeast

Jill Kuglin Schweitzer and Dennis M. Livingston

in Human Molecular Genetics

Volume 6, issue 3, pages 349-355
Published in print March 1997 | ISSN: 0964-6906
Published online March 1997 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/6.3.349
Destabilization of CAG Trinucleotide Repeat Tracts by Mismatch Repair Mutations in Yeast

Show Summary Details

Preview

To examine the genetic factors that affect the stability of disease-associated trinucleotide repeats, we have assessed the stability of CAG repeats in yeast strains with mutations in the mismatch repair system. We have found that both pms1 and msh2 mutations destabilize repeat tracts. Destabilization is evidenced both by the increased frequency of repeat length changes and in the pattern of changes that are observed. In wild-type cells repeats are relatively stable when CAG serves as the lagging strand template but relatively unstable when CTG serves as the lagging strand template. Large contractions in repeat length are the most common change. In pms1 and msh2 mutants the relatively stable tracts incur more tract length changes. In addition, many small deletions and some small additions, most often of one repeat unit, are frequent in repeats of the stable orientation. These small changes also are seen as a new class of events that occur in repeats in the unstable orientation. The results show that in yeast the mismatch repair system prevents small changes from occurring but cannot prevent larger changes from occurring.

Journal Article.  4901 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.