Journal Article

Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis

Laura Kennedy, Elizabeth Evans, Chiung-Mei Chen, Lyndsey Craven, Peter J. Detloff, Margaret Ennis and Peggy F. Shelbourne

in Human Molecular Genetics

Volume 12, issue 24, pages 3359-3367
Published in print December 2003 | ISSN: 0964-6906
Published online December 2003 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddg352
Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis

Show Summary Details

Preview

Huntington disease is caused by the expansion of a CAG repeat encoding an extended glutamine tract in a protein called huntingtin. Although the mutant protein is widely expressed, the earliest and most striking neuropathological changes are observed in the striatum. Here we show dramatic mutation length increases (gains of up to 1000 CAG repeats) in human striatal cells early in the disease course, most likely before the onset of pathological cell loss. Studies of knock-in HD mouse models indicate that the size of the initial CAG repeat mutation may influence both onset and tissue-specific patterns of age-dependent, expansion-biased mutation length variability. Given that CAG repeat length strongly correlates with clinical severity, we suggest that somatic increases of mutation length may play a major role in the progressive nature and cell-selective aspects of both adult-onset and juvenile-onset HD pathogenesis and we discuss the implications of this interpretation of the data presented.

Journal Article.  6933 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.