Journal Article

Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes

Richard J. Gibbons

in Human Molecular Genetics

Volume 14, issue suppl_1, pages R85-R92
Published in print April 2005 | ISSN: 0964-6906
Published online April 2005 | e-ISSN: 1460-2083 | DOI:
Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes

Show Summary Details


Inactivation of tumour suppressor genes is central to the development of cancer. Although this inactivation was once considered to be secondary to intragenic mutations, it is now clear that silencing of these genes often occurs by epigenetic means. Hypermethylation of CpG islands associated with the tumour suppressor genes was the first manifestation of this phenomenon to be described. It is apparent, however, that this is one of a host of chromatin modifications which characterize gene silencing. Although we know little about what determines which loci are affected, our understanding of the nature of the epigenetic marks and how they are established has blossomed. There is no compelling evidence that cancer ever develops by purely epigenetic means, but it is apparent that perturbations in the apparatus which establish the epigenome may contribute to the development of cancer. This review will focus on the role of two classes of chromatin remodelling enzymes, those that alter histones by the addition or removal of acetyl and methyl groups and those of the SWI/SNF family of proteins that change the topology of the nucleosome and its DNA strand via the hydrolysis of ATP, and we shall examine the consequence of mutations in, or mis-expression of, these factors. In some cases, mutations in these factors appear to play a direct role in cancer development. However, their general role as important intermediaries involved in regulating gene expression makes them attractive therapeutic targets. In exciting developments, it has been shown that inhibition of these factors leads to the reversal of tumour suppressor gene silencing and the inhibition of cancer cell growth.

Journal Article.  6797 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.