Journal Article

Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning

Susan J. Nixon, Jeremy Wegner, Charles Ferguson, Pierre-François Méry, John F. Hancock, Peter D. Currie, Brian Key, Monte Westerfield and Robert G. Parton

in Human Molecular Genetics

Volume 14, issue 13, pages 1727-1743
Published in print July 2005 | ISSN: 0964-6906
Published online May 2005 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddi179
Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning

Show Summary Details

Preview

Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (α and β), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3, and the amino acids altered in human muscle diseases are conserved in the zebrafish protein. During embryonic development, cav3 expression is apparent by early segmentation stages in the first differentiating muscle precursors, the adaxial cells and slightly later in the notochord. cav3 expression appears in the somites during mid-segmentation stages and then later in the pectoral fins and facial muscles. Cav3 and caveolae are located along the entire sarcolemma of late stage embryonic muscle fibers, whereas β-dystroglycan is restricted to the muscle fiber ends. Down-regulation of Cav3 expression causes gross muscle abnormalities and uncoordinated movement. Ultrastructural analysis of isolated muscle fibers reveals defects in myoblast fusion and disorganized myofibril and membrane systems. Expression of the zebrafish equivalent to a human muscular dystrophy mutant, CAV3P104L, causes severe disruption of muscle differentiation. In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord. These studies provide new insights into the role of Cav3 in muscle development and demonstrate its requirement for correct intracellular organization and myoblast fusion.

Journal Article.  11197 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.