Journal Article

Mice lacking <i>COX10</i> in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome <i>c</i> oxidase deficiency

Francisca Diaz, Christine K. Thomas, Sofia Garcia, Dayami Hernandez and Carlos T. Moraes

in Human Molecular Genetics

Volume 14, issue 18, pages 2737-2748
Published in print September 2005 | ISSN: 0964-6906
Published online August 2005 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddi307
Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency

Show Summary Details

Preview

We have created a mouse model with an isolated cytochrome c oxidase (COX) deficiency by disrupting the COX10 gene in skeletal muscle. Missense mutations in COX10 have been previously associated with mitochondrial disorders. Cox10p is a protoheme:heme-O-farnesyl transferase required for the synthesis of heme a, the prosthetic group of the catalytic center of COX. COX10 conditional knockout mice were generated by crossing a LoxP-tagged COX10 mouse with a transgenic mouse expressing cre recombinase under the myosin light chain 1f promoter. The COX10 knockout mice were healthy until approximately 3 months of age when they started developing a slowly progressive myopathy. Surprisingly, even though COX activity in COX10 KO muscles was <5% of control muscle at 2.5 months, these muscles were still able to contract at 80–100% of control maximal forces and showed only a 10% increase in fatigability, and no signs of oxidative damage or apoptosis were detected. However, the myopathy worsened with time, particularly in female animals. This COX10 KO mouse allowed us to correlate the muscle function with residual COX activity, an estimate that can help predict the progression pattern of human mitochondrial myopathies.

Journal Article.  8060 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.