Journal Article

RNA-binding protein is involved in aggregation of light neurofilament protein and is implicated in the pathogenesis of motor neuron degeneration

Hong Lin, Jinbin Zhai and William W. Schlaepfer

in Human Molecular Genetics

Volume 14, issue 23, pages 3643-3659
Published in print December 2005 | ISSN: 0964-6906
Published online October 2005 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddi392
RNA-binding protein is involved in aggregation of light neurofilament protein and is implicated in the pathogenesis of motor neuron degeneration

Show Summary Details

Preview

Abnormal protein aggregation is emerging as a common theme in the pathogenesis of neurodegenerative disease. Our previous studies have shown that overexpression of untranslated light neurofilament (NF-L) RNA causes motor neuron degeneration in transgenic mice, leads to accumulation of ubiquitinated aggregates in degenerating cultured motor neurons and triggers aggregation of NF-L protein and co-aggregation of mutant SOD1 protein in neuronal cells. Here, we report that p190RhoGEF, an RNA-binding protein that binds to a destabilizing element in NF-L mRNA, is involved in aggregation of NF-L protein and is implicated in the pathogenesis of motor neuron degeneration. We show that p190RhoGEF co-aggregates with unassembled NF-L protein and that co-aggregation is associated with down-regulation of parent NF-L mRNA in neuronal cells. Co-expression of NF-M increases NF assembly and reduces RNA-triggered aggregation as well as loss of solubility of NF-L protein. siRNA-induced down-regulation of p190RhoGEF not only reduces aggregation and promotes assembly of NF-L and NF-M, but also causes reversal of aggregation and recovery of NF assembly in transfected cells. Examination of transgenic models of motor neuron disease shows that prominent aggregates of p190RhoGEF and NF-L and down-regulation of NF-L expression occur in degenerating motor neurons of mice expressing untranslated NF-L RNA or a G93A mutant SOD1 transgene. Moreover, aggregates of p190RhoGEF and NF-L appear as early pathological changes in presymptomatic G93A mutant SOD1 transgenic mice. Together, the findings indicate that p190RhoGEF is involved in aggregation of NF-L protein and support a working hypothesis that aggregation of p190RhoGEF and NF-L is an upstream event triggering neurotoxicity in motor neuron disease.

Journal Article.  10429 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.