Journal Article

Smooth muscle-specific dystrophin expression improves aberrant vasoregulation in mdx mice

Kaori Ito, Shigemi Kimura, Shiro Ozasa, Makoto Matsukura, Makoto Ikezawa, Kowashi Yoshioka, Hiroe Ueno, Misao Suzuki, Kimi Araki, Ken-ichi Yamamura, Takeshi Miwa, George Dickson, Gail D. Thomas and Teruhisa Miike

in Human Molecular Genetics

Volume 15, issue 14, pages 2266-2275
Published in print July 2006 | ISSN: 0964-6906
Published online June 2006 | e-ISSN: 1460-2083 | DOI:
Smooth muscle-specific dystrophin expression improves aberrant vasoregulation in mdx mice

Show Summary Details


Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disease caused by mutations of the gene encoding the cytoskeletal protein dystrophin. Therapeutic options for DMD are limited because the pathogenetic mechanism by which dystrophin deficiency produces the clinical phenotype remains obscure. Recent reports of abnormal α-adrenergic vasoregulation in the exercising muscles of DMD patients and in the mdx mouse, an animal model of DMD, prompted us to hypothesize that the dystrophin-deficient smooth muscle contributes to the vascular and dystrophic phenotypes of DMD. To test this, we generated transgenic mdx mice that express dystrophin only in smooth muscle (SMTg/mdx). We found that α-adrenergic vasoconstriction was markedly attenuated in the contracting hindlimbs of C57BL/10 wild-type mice, an effect that was mediated by nitric oxide (NO) and was severely impaired in the mdx mice. SMTg/mdx mice showed an intermediate phenotype, with partial restoration of the NO-dependent modulation of α-adrenergic vasoconstriction in active muscle. In addition, the elevated serum creatine kinase levels observed in mdx mice were significantly reduced in SMTg/mdx mice. This is the first report of a functional role of dystrophin in vascular smooth muscle.

Journal Article.  6068 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.