Journal Article

A heterozygous c-Maf transactivation domain mutation causes congenital cataract and enhances target gene activation

R. Perveen, J. Favor, R.V. Jamieson, D.W. Ray and G.C.M. Black

in Human Molecular Genetics

Volume 16, issue 9, pages 1030-1038
Published in print May 2007 | ISSN: 0964-6906
Published online March 2007 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddm048
A heterozygous c-Maf transactivation domain mutation causes congenital cataract and enhances target gene activation

Show Summary Details

Preview

MAF, one of a family of large Maf bZIP transcription factors, is mutated in human developmental ocular disorders that include congenital cataract, microcornea, coloboma and anterior segment dysgenesis. Expressed early in the developing lens vesicle, it is central to regulation of lens crystallin gene expression. We report a semi-dominant mouse c-Maf mutation recovered after ENU mutatgenesis which results in the substitution, D90V, at a highly conserved residue within the N-terminal 35 amino-acid minimal transactivation domain (MTD). Unlike null and loss-of-function c-Maf mutations, which cause severe runting and renal abnormalities, the phenotype caused by the D90V mutation is isolated cataract. In reporter assays, D90V results in increased promoter activation, a situation similar to MTD mutations of NRL that also cause human disease. In contrast to wild-type protein, the c-Maf D90V mutant protein is not inhibited by protein kinase A-dependent pathways. The MTD of large Maf proteins has been shown to interact with the transcriptional co-activator p300 and we demonstrate that c-Maf D90V enhances p300 recruitment in a cell-type dependent manner. We observed the same for the pathogenic human NRL MTD mutation S50T, which suggests a common mechanism of action.

Journal Article.  6270 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.