Journal Article

Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain

Peggy F. Shelbourne, Christine Keller-McGandy, Wenya Linda Bi, Song-Ro Yoon, Louis Dubeau, Nicola J. Veitch, Jean Paul Vonsattel, Nancy S. Wexler, Norman Arnheim and Sarah J. Augood

in Human Molecular Genetics

Volume 16, issue 10, pages 1133-1142
Published in print May 2007 | ISSN: 0964-6906
Published online April 2007 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddm054
Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain

Show Summary Details

Preview

Huntington disease is caused by the expansion of a CAG repeat encoding an extended glutamine tract in a protein called huntingtin. Here, we provide evidence supporting the hypothesis that somatic increases of mutation length play a role in the progressive nature and cell-selective aspects of HD pathogenesis. Results from micro-dissected tissue and individual laser-dissected cells obtained from human HD cases and knock-in HD mice indicate that the CAG repeat is unstable in all cell types tested although neurons tend to have longer mutation length gains than glia. Mutation length gains occur early in the disease process and continue to accumulate as the disease progresses. In keeping with observed patterns of cell loss, neuronal mutation length gains tend to be more prominent in the striatum than in the cortex of low-grade human HD cases, less so in more advanced cases. Interestingly, neuronal sub-populations of HD mice appear to have different propensities for mutation length gains; in particular, smaller mutation length gains occur in nitric oxide synthase-positive striatal interneurons (a relatively spared cell type in HD) compared with the pan-striatal neuronal population. More generally, the data demonstrate that neuronal changes in HD repeat length can be at least as great, if not greater, than those observed in the germline. The fact that significant CAG repeat length gains occur in non-replicating cells also argues that processes such as inappropriate mismatch repair rather than DNA replication are involved in generating mutation instability in HD brain tissue.

Journal Article.  6982 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.