Journal Article

Neur-ons and neur-offs: regulators of neural induction in vertebrate embryos and embryonic stem cells

Julie Gaulden and Jeremy F. Reiter

in Human Molecular Genetics

Volume 17, issue R1, pages R60-R66
Published in print April 2008 | ISSN: 0964-6906
Published online April 2008 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddn119
Neur-ons and neur-offs: regulators of neural induction in vertebrate embryos and embryonic stem cells

Show Summary Details

Preview

Although the spatial and temporal orchestration of early vertebrate embryogenesis is missing from cell culture systems, recent work suggests that many of the same signals affecting neural induction in vertebrate embryos also regulate embryonic stem (ES) cell neurogenesis. One key regulatory mechanism involved in both in vivo and in vitro neural induction is the inhibition of bone morphogenetic protein (BMP) signals. Wnts and Fibroblast Growth Factors represent additional regulatory influences, which may affect the adoption of neural fates through both BMP-dependent and BMP-independent mechanisms. Insights into neural induction in vivo help to guide paradigms for promoting neural differentiation by ES cells. Conversely, insights into the mechanisms by which ES cells adopt neural fates may provide an improved understanding of neural induction in the early embryo.

Journal Article.  4287 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.