Journal Article

Genetic isolation and characterization of a splicing mutant of zebrafish dystrophin

Jeffrey R. Guyon, Julie Goswami, Susan J. Jun, Marielle Thorne, Melanie Howell, Timothy Pusack, Genri Kawahara, Leta S. Steffen, Michal Galdzicki and Louis M. Kunkel

in Human Molecular Genetics

Volume 18, issue 1, pages 202-211
Published in print January 2009 | ISSN: 0964-6906
Published online October 2008 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddn337
Genetic isolation and characterization of a splicing mutant of zebrafish dystrophin

Show Summary Details

Preview

Sapje-like (sapcl100) was one of eight potential zebrafish muscle mutants isolated as part of an early-pressure screen of 500 families. This mutant shows a muscle tearing phenotype similar to sapje (dys−/−) and both mutants fail to genetically complement suggesting they have a mutation in the same gene. Protein analysis confirms a lack of dystrophin in developing sapje-like embryos. Sequence analysis of the sapje-like dystrophin mRNA shows that exon 62 is missing in the dystrophin transcript causing exon 63 to be translated out of frame terminating translation at a premature stop codon at the end of exon 63. Sequence analysis of sapje-like genomic DNA identified a mutation in the donor splice junction at the end of dystrophin exon 62. This mutation is similar to splicing mutations associated with human forms of Duchenne Muscular Dystrophy. Sapje-like is the first zebrafish dystrophin splicing mutant identified to date and represents a novel disease model which can be used in future studies to identify therapeutic compounds for treating diseases caused by splicing defects.

Journal Article.  5897 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.