Journal Article

Paternal deletion of <i>Meg1/Grb10</i> DMR causes maternalization of the <i>Meg1/Grb10</i> cluster in mouse proximal Chromosome 11 leading to severe pre- and postnatal growth retardation

Hirosuke Shiura, Kenji Nakamura, Takafusa Hikichi, Toshiaki Hino, Kanako Oda, Rika Suzuki-Migishima, Takashi Kohda, Tomoko Kaneko-Ishino and Fumitoshi Ishino

in Human Molecular Genetics

Volume 18, issue 8, pages 1424-1438
Published in print April 2009 | ISSN: 0964-6906
Published online January 2009 | e-ISSN: 1460-2083 | DOI:
Paternal deletion of Meg1/Grb10 DMR causes maternalization of the Meg1/Grb10 cluster in mouse proximal Chromosome 11 leading to severe pre- and postnatal growth retardation

Show Summary Details


Mice with maternal duplication of proximal Chromosome 11 (MatDp(prox11)), where Meg1/Grb10 is located, exhibit pre- and postnatal growth retardation. To elucidate the responsible imprinted gene for the growth abnormality, we examined the precise structure and regulatory mechanism of this imprinted region and generated novel model mice mimicking the pattern of imprinted gene expression observed in the MatDp(prox11) by deleting differentially methylated region of Meg1/Grb10 (Meg1-DMR). It was found that Cobl and Ddc, the neighboring genes of Meg1/Grb10, also comprise the imprinted region. We also found that the mouse-specific repeat sequence consisting of several CTCF-binding motifs in the Meg1-DMR functions as a silencer, suggesting that the Meg1/Grb10 imprinted region adopted a different regulatory mechanism from the H19/Igf2 region. Paternal deletion of the Meg1-DMR (+/ΔDMR) caused both upregulation of the maternally expressed Meg1/Grb10 Type I in the whole body and Cobl in the yolk sac and loss of paternally expressed Meg1/Grb10 Type II and Ddc in the neonatal brain and heart, respectively, demonstrating maternalization of the entire Meg1/Grb10 imprinted region. We confirmed that the +/ΔDMR mice exhibited the same growth abnormalities as the MatDp(prox11) mice. Fetal and neonatal growth was very sensitive to the expression level of Meg1/Grb10 Type I, indicating that the 2-fold increment of the Meg1/Grb10 Type I is one of the major causes of the growth retardation observed in the MatDp(prox11) and +/ΔDMR mice. This suggests that the corresponding human GRB10 Type I plays an important role in the etiology of Silver-Russell syndrome caused by partial trisomy of 7p11-p13.

Journal Article.  8562 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.