Journal Article

Large-scale analysis of exonized mammalian-wide interspersed repeats in primate genomes

Lan Lin, Peng Jiang, Shihao Shen, Seiko Sato, Beverly L. Davidson and Yi Xing

in Human Molecular Genetics

Volume 18, issue 12, pages 2204-2214
Published in print June 2009 | ISSN: 0964-6906
Published online March 2009 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddp152
Large-scale analysis of exonized mammalian-wide interspersed repeats in primate genomes

More Like This

Show all results sharing this subject:

  • Genetics and Genomics

GO

Show Summary Details

Preview

Transposable elements (TEs) are major sources of new exons in higher eukaryotes. Almost half of the human genome is derived from TEs, and many types of TEs have the potential to exonize. In this work, we conducted a large-scale analysis of human exons derived from mammalian-wide interspersed repeats (MIRs), a class of old TEs which was active prior to the radiation of placental mammals. Using exon array data of 328 MIR-derived exons and RT–PCR analysis of 39 exons in 10 tissues, we identified 15 constitutively spliced MIR exons, and 15 MIR exons with tissue-specific shift in splicing patterns. Analysis of RNAs from multiple species suggests that the splicing events of many strongly included MIR exons have been established before the divergence of primates and rodents, while a small percentage result from recent exonization during primate evolution. Interestingly, exon array data suggest substantially higher splicing activities of MIR exons when compared with exons derived from Alu elements, a class of primate-specific retrotransposons. This appears to be a universal difference between exons derived from young and old TEs, as it is also observed when comparing Alu exons to exons derived from LINE1 and LINE2, two other groups of old TEs. Together, this study significantly expands current knowledge about exonization of TEs. Our data imply that with sufficient evolutionary time, numerous new exons could evolve beyond the evolutionary intermediate state and contribute functional novelties to modern mammalian genomes.

Journal Article.  8294 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.