Journal Article

AIRE activated tissue specific genes have histone modifications associated with inactive chromatin

Tõnis Org, Ana Rebane, Kai Kisand, Martti Laan, Uku Haljasorg, Reidar Andreson and Pärt Peterson

in Human Molecular Genetics

Volume 18, issue 24, pages 4699-4710
Published in print December 2009 | ISSN: 0964-6906
Published online September 2009 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddp433
AIRE activated tissue specific genes have histone modifications associated with inactive chromatin

Show Summary Details

Preview

The Autoimmune Regulator (AIRE) protein is expressed in thymic medullary epithelial cells, where it promotes the ectopic expression of tissue-restricted antigens needed for efficient negative selection of developing thymocytes. Mutations in AIRE cause APECED syndrome, which is characterized by a breakdown of self-tolerance. The molecular mechanism by which AIRE increases the expression of a variety of different genes remains unknown. Here, we studied AIRE-regulated genes using whole genome expression analysis and chromatin immunoprecipitation. We show that AIRE preferentially activates genes that are tissue-specific and characterized by low levels of initial expression in stably transfected HEK293 cell model and mouse thymic medullary epithelial cells. In addition, the AIRE-regulated genes lack active chromatin marks, such as histone H3 trimethylation (H3K4me3) and acetylation (AcH3), on their promoters. We also show that during activation by AIRE, the target genes acquire histone H3 modifications associated with transcription and RNA polymerase II. In conclusion, our data show that AIRE is able to promote ectopic gene expression from chromatin associated with histone modifications characteristic to inactive genes.

Journal Article.  6724 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.