Journal Article

Col4a1 mutation in mice causes defects in vascular function and low blood pressure associated with reduced red blood cell volume

Tom Van Agtmael, Matthew A. Bailey, Ursula Schlötzer-Schrehardt, Eilidh Craigie, Ian J. Jackson, David G. Brownstein, Ian L. Megson and John J. Mullins

in Human Molecular Genetics

Volume 19, issue 6, pages 1119-1128
Published in print March 2010 | ISSN: 0964-6906
Published online January 2010 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddp584
Col4a1 mutation in mice causes defects in vascular function and low blood pressure associated with reduced red blood cell volume

Show Summary Details

Preview

Collagen type IV is the major structural component of the basement membrane and COL4A1 mutations cause adult small vessel disease, familial porencephaly and hereditary angiopathy with nephropathy aneurysm and cramps (HANAC) syndrome. Here, we show that animals with a Col4a1 missense mutation (Col4a1+/Raw) display focal detachment of the endothelium from the media and age-dependent defects in vascular function including a reduced response to nor-epinephrine. Age-dependent hypersensitivity to acetylcholine is abolished by inhibition of nitric oxide synthase (NOS) activity, indicating that Col4a1 mutations affect vasorelaxation mediated by endothelium-derived nitric oxide (NO). These defects are associated with a reduction in basal NOS activity and the development of heightened NO sensitivity of the smooth muscle. The vascular function defects are physiologically relevant as they maintain in part the hypotension in mutant animals, which is primarily associated with a reduced red blood cell volume due to a reduction in red blood cell number, rather than defects in kidney function. To understand the molecular mechanism underlying these vascular defects, we examined the deposition of collagen type IV in the basement membrane, and found it to be defective. Interestingly, this mutation also leads to activation of the unfolded protein response. In summary, our results indicate that mutations in COL4A1 result in a complex vascular phenotype encompassing defects in maintenance of vascular tone, endothelial cell function and blood pressure regulation.

Journal Article.  5426 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.