Journal Article

AP-2α knockout mice exhibit optic cup patterning defects and failure of optic stalk morphogenesis

Erin A. Bassett, Trevor Williams, Amanda L. Zacharias, Philip J. Gage, Sabine Fuhrmann and Judith A. West-Mays

in Human Molecular Genetics

Volume 19, issue 9, pages 1791-1804
Published in print May 2010 | ISSN: 0964-6906
Published online February 2010 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddq060
AP-2α knockout mice exhibit optic cup patterning defects and failure of optic stalk morphogenesis

Show Summary Details

Preview

Appropriate development of the retina and optic nerve requires that the forebrain-derived optic neuroepithelium undergoes a precisely coordinated sequence of patterning and morphogenetic events, processes which are highly influenced by signals from adjacent tissues. Our previous work has suggested that transcription factor activating protein-2 alpha (AP-2α; Tcfap2a) has a non-cell autonomous role in optic cup (OC) development; however, it remained unclear how OC abnormalities in AP-2α knockout (KO) mice arise at the morphological and molecular level. In this study, we show that patterning and morphogenetic defects in the AP-2α KO optic neuroepithelium begin at the optic vesicle stage. During subsequent OC formation, ectopic neural retina and optic stalk-like tissue replaced regions of retinal pigment epithelium. AP-2α KO eyes also displayed coloboma in the ventral retina, and a rare phenotype in which the optic stalk completely failed to extend, causing the OCs to be drawn inward to the midline. We detected evidence of increased sonic hedgehog signaling in the AP-2α KO forebrain neuroepithelium, which likely contributed to multiple aspects of the ocular phenotype, including expansion of PAX2-positive optic stalk-like tissue into the OC. Our data suggest that loss of AP-2α in multiple tissues in the craniofacial region leads to severe OC and optic stalk abnormalities by disturbing the tissue–tissue interactions required for ocular development. In view of recent data showing that mutations in human TFAP2A result in similar eye defects, the current findings demonstrate that AP-2α KO mice provide a valuable model for human ocular disease.

Journal Article.  9383 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.