Journal Article

Molecular mechanisms leading to three different phenotypes in the cblD defect of intracellular cobalamin metabolism

Martin Stucki, David Coelho, Terttu Suormala, Patricie Burda, Brian Fowler and Matthias R. Baumgartner

in Human Molecular Genetics

Volume 21, issue 6, pages 1410-1418
Published in print March 2012 | ISSN: 0964-6906
Published online December 2011 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddr579
Molecular mechanisms leading to three different phenotypes in the cblD defect of intracellular cobalamin metabolism

Show Summary Details

Preview

The cblD defect of intracellular vitamin B12 metabolism can lead to isolated methylmalonic aciduria (cblD-MMA) or homocystinuria (cblD-HC), or combined methylmalonic aciduria and homocystinuria (cblD-MMA/HC). We studied the mechanism whereby MMADHC mutations can lead to three phenotypes. The effect of various expression vectors containing MMADHC modified to contain an enhanced mitochondrial leader sequence or mutations changing possible downstream sites of reinitiation of translation or mutations introducing stop codons on rescue of adenosyl- and methylcobalamin (MeCbl) formation was studied. The constructs were transfected into cell lines derived from various cblD patient's fibroblasts. Expression of 10 mutant alleles from 15 cblD patients confirmed that the nature and location of the mutations correlate with the biochemical phenotype. In cblD-MMA/HC cells, improving mitochondrial targeting of MMADHC clearly increased the formation of adenosylcobalamin (AdoCbl) with a concomitant decrease in MeCbl formation. In cblD-MMA cells, this effect was dependent on the mutation and showed a negative correlation with endogenous MMADHC mRNA levels. These findings support the hypothesis that a single protein exists with two different functional domains that interact with either cytosolic or mitochondrial targets. Also a delicate balance exists between cytosolic MeCbl and mitochondrial AdoCbl synthesis, supporting the role of cblD protein as a branch point in intracellular cobalamin trafficking. Furthermore, our data indicate that the sequence after Met116 is sufficient for MeCbl synthesis, whereas the additional sequence between Met62 and Met116 is required for AdoCbl synthesis. Accordingly, western blot studies reveal proteins of the size expected from the stop codon position with subsequent reinitiation of translation.

Journal Article.  5547 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.