Journal Article

Respiratory syncytial virus potentiates ABCA3 mutation-induced loss of lung epithelial cell differentiation

Eva Kaltenborn, Sunčana Kern, Sabrina Frixel, Laetitia Fragnet, Karl-Klaus Conzelmann, Ralf Zarbock and Matthias Griese

in Human Molecular Genetics

Volume 21, issue 12, pages 2793-2806
Published in print June 2012 | ISSN: 0964-6906
Published online March 2012 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/dds107
Respiratory syncytial virus potentiates ABCA3 mutation-induced loss of lung epithelial cell differentiation

Show Summary Details

Preview

ATP-binding cassette transporter A3 (ABCA3) is a lipid transporter active in lung alveolar epithelial type II cells (ATII) and is essential for their function as surfactant-producing cells. ABCA3 mutational defects cause respiratory distress in newborns and interstitial lung disease (ILD) in children. The molecular pathomechanisms are largely unknown; however, viral infections may initiate or aggravate ILDs. Here, we investigated the impact of the clinically relevant ABCA3 mutations, p.Q215K and p.E292V, by stable transfection of A549 lung epithelial cells. ABCA3 mutations strongly impaired expression of the ATII differentiation marker SP-C and the key epithelial cell adhesion proteins E-cadherin and zonula occludens-1. Concurrently, cells expressing ABCA3 mutation acquired mesenchymal features as observed by increased expression of SNAI1, MMP-2 and TGF-β1, and elevated phosphorylation of Src. Infection with respiratory syncytial virus (RSV), the most common viral respiratory pathogen in small children, potentiated the observed mutational effects on loss of epithelial and acquisition of mesenchymal characteristics. In addition, RSV infection of cells harboring ABCA3 mutations resulted in a morphologic shift to a mesenchymal phenotype. We conclude that ABCA3 mutations, potentiated by RSV infection, induce loss of epithelial cell differentiation in ATII. Loss of key epithelial features may disturb the integrity of the alveolar epithelium, thereby comprising its functionality. We suggest the impairment of epithelial function as a mechanism by which ABCA3 mutations cause ILD.

Journal Article.  7582 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.