Journal Article

Enriched rearing improves behavioral responses of an animal model for CNV-based autistic-like traits

Melanie Lacaria, Corinne Spencer, Wenli Gu, Richard Paylor and James R. Lupski

in Human Molecular Genetics

Volume 21, issue 14, pages 3083-3096
Published in print July 2012 | ISSN: 0964-6906
Published online April 2012 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/dds124
Enriched rearing improves behavioral responses of an animal model for CNV-based autistic-like traits

Show Summary Details

Preview

Potocki–Lupski syndrome (PTLS; MIM #610883), characterized by neurobehavioral abnormalities, intellectual disability and congenital anomalies, is caused by a 3.7-Mb duplication in 17p11.2. Neurobehavioral studies determined that ∼70–90% of PTLS subjects tested positive for autism or autism spectrum disorder (ASD). We previously chromosomally engineered a mouse model for PTLS (Dp(11)17/+) with a duplication of a 2-Mb genomic interval syntenic to the PTLS region and identified consistent behavioral abnormalities in this mouse model. We now report extensive phenotyping with behavioral assays established to evaluate core and associated autistic-like traits, including tests for social abnormalities, ultrasonic vocalizations, perseverative and stereotypic behaviors, anxiety, learning and memory deficits and motor defects. Alterations were identified in both core and associated ASD-like traits. Rearing this animal model in an enriched environment mitigated some, and even rescued selected, neurobehavioral abnormalities, suggesting a role for gene-environment interactions in the determination of copy number variation-mediated autism severity.

Journal Article.  8509 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.