Journal Article

The catecholamine biosynthetic enzyme dopamine β-hydroxylase (DBH): first genome-wide search positions trait-determining variants acting additively in the proximal promoter

Maja Mustapic, Adam X. Maihofer, Manjula Mahata, Yuqing Chen, Dewleen G. Baker, Daniel T. O'Connor and Caroline M. Nievergelt

in Human Molecular Genetics

Volume 23, issue 23, pages 6375-6384
Published in print December 2014 | ISSN: 0964-6906
Published online June 2014 | e-ISSN: 1460-2083 | DOI: http://dx.doi.org/10.1093/hmg/ddu332
The catecholamine biosynthetic enzyme dopamine β-hydroxylase (DBH): first genome-wide search positions trait-determining variants acting additively in the proximal promoter

Show Summary Details

Preview

Dopamine beta-hydroxylase (DBH) is the biosynthetic enzyme catalyzing formation of norepinephrine. Changes in DBH expression or activity have been implicated in the pathogenesis of cardiovascular and neuropsychiatric disorders. Genetic determination of DBH enzymatic activity and its secretion are only incompletely understood. We began with a genome-wide association search for loci contributing to DBH activity in human plasma. Initially, in a population sample of European ancestry, we identified the proximal DBH promoter as a region harboring three common trait-determining variants (top hit rs1611115, P = 7.2 × 10−51). We confirmed their effects on transcription and showed that the three variants each acted additively on gene expression. Results were replicated in a population sample of Native American descent (top hit rs1611115, P = 4.1 × 10−15). Jointly, DBH variants accounted for 57% of DBH trait variation. We further identified a genome-wide significant SNP at the LOC338797 locus on chromosome 12 as trans-quantitative trait locus (QTL) (rs4255618, P = 4.62 × 10−8). Conditional analyses on DBH identified a third genomic region contributing to DBH variation: a likely cis-QTL adjacent to DBH in SARDH (rs7040170, P = 1.31 × 10−14) on chromosome 9q. We conclude that three common SNPs in the DBH promoter act additively to control phenotypic variation in DBH levels, and that two additional novel loci (SARDH and LOC338797) may also contribute to the expression of this catecholamine biosynthetic trait. Identification of DBH variants with strong effects makes it possible to take advantage of Mendelian randomization approaches to test causal effects of this intermediate trait on disease.

Journal Article.  7182 words.  Illustrated.

Subjects: Genetics and Genomics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.