Journal Article

Anti-proliferative synergy of lysophospholipid analogues and ketoconazole against <i>Trypanosoma cruzi</i> (Kinetoplastida: Trypanosomatidae): cellular and ultrastructural analysis

Ricardo M. Santa-Rita, Renee Lira, Helene Santos Barbosa, Julio A. Urbina and Solange L. de Castro

in Journal of Antimicrobial Chemotherapy

Volume 55, issue 5, pages 780-784
Published in print May 2005 | ISSN: 0305-7453
Published online May 2005 | e-ISSN: 1460-2091 | DOI: http://dx.doi.org/10.1093/jac/dki087
Anti-proliferative synergy of lysophospholipid analogues and ketoconazole against Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae): cellular and ultrastructural analysis

More Like This

Show all results sharing these subjects:

  • Medical Oncology
  • Critical Care

GO

Show Summary Details

Preview

Objectives: Investigation of the antiproliferative synergy of the lysophospholipid analogues (LPAs) edelfosine, ilmofosine and miltefosine with the ergosterol biosynthesis inhibitor ketoconazole against Trypanosoma cruzi.

Methods: The effect of LPAs, ketoconazole and their combination was evaluated against epimastigotes and intracellular amastigotes by the parameter IC50 leading to construction of isobolograms, for determination of a synergic effect. For epimastigotes, ultrastructural damage induced by these treatments was evaluated by transmission and scanning electron microscopy.

Results: Synergy was confirmed against both epimastigotes and amastigotes of the parasite. Edelfosine or ketoconazole alone induced morphological alterations in the plasma membrane and reservosomes of the parasites, while in combination, they also led to severe mitochondrial damage, formation of autophagic structures and multinucleation. Scanning electron microscopy confirmed the effect at the plasma membrane and also revealed alterations in the shape of the parasites.

Conclusions: Our results describe the synergic anti-proliferative effect of LPAs and ketoconazole against epimastigotes and intracellular amastigotes and suggest that in epimastigotes, plasma membrane, reservosomes and mitochondria are targets of these drugs, possibly by interference with lipid metabolism.

Keywords: T. cruzi; chemotherapy; edelfosine; ilmofosine; miltefosine; synergy

Journal Article.  2238 words.  Illustrated.

Subjects: Medical Oncology ; Critical Care

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.