Journal Article

Assessment of Driving Capability Through the Use of Clinical and Psychomotor Tests in Relation to Blood Cannabinoids Levels Following Oral Administration of 20 mg Dronabinol or of a Cannabis Decoction Made with 20 or 60 mg Δ<sup>9</sup>-THC*

Annick Ménétrey, Marc Augsburger, Bernard Favrat, Marie A. Pin, Laura E. Rothuizen, Monique Appenzeller, Thierry Buclin, Patrice Mangin and Christian Giroud

in Journal of Analytical Toxicology

Volume 29, issue 5, pages 327-338
Published in print July 2005 | ISSN: 0146-4760
Published online July 2005 | e-ISSN: 1945-2403 | DOI: http://dx.doi.org/10.1093/jat/29.5.327
Assessment of Driving Capability Through the Use of Clinical and Psychomotor Tests in Relation to Blood Cannabinoids Levels Following Oral Administration of 20 mg Dronabinol or of a Cannabis Decoction Made with 20 or 60 mg Δ9-THC*

More Like This

Show all results sharing these subjects:

  • Medical Toxicology
  • Toxicology (Non-medical)

GO

Show Summary Details

Preview

Δ9-Tetrahydrocannabinol (THC) is frequently found in the blood of drivers suspected of driving under the influence of cannabis or involved in traffic crashes. The present study used a double-blind crossover design to compare the effects of medium (16.5 mg THC) and high doses (45.7 mg THC) of hemp milk decoctions or of a medium dose of dronabinol (20 mg synthetic THC, Marinol®) on several skills required for safe driving. Forensic interpretation of cannabinoids blood concentrations were attempted using the models proposed by Daldrup (cannabis influencing factor or CIF) and Huestis and coworkers. First, the time concentration-profiles of THC, 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) (active metaholite of THC), and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) in whole blood were determined by gas chromatography-mass spectrometry-negative ion chemical ionization. Compared to smoking studies, relatively low concentrations were measured in blood. The highest mean THC concentration (8.4 ng/mL) was achieved 1 h after ingestion of the strongest decoction. Mean maximum 11-OH-THC level (12.3 ng/mL) slightly exceeded that of THC. THCCOOH reached its highest mean concentration (66.2 ng/mL) 2.5–5.5 h after intake. Individual blood levels showed considerable intersubject variability. The willingness to drive was influenced by the importance of the requested task. Under significant cannabinoids influence, the participants refused to drive when they were asked whether they would agree to accomplish several unimportant tasks, (e.g., driving a friend to a party). Most of the participants reported a significant feeling of intoxication and did not appreciate the effects, notably those felt after drinking the strongest decoction. Road sign and tracking testing revealed obvious and statistically significant differences between placebo and treatments. A marked impairment was detected after ingestion of the strongest decoction. A CIF value, which relies on the molar ratio of main active to inactive cannabinoids, greater than 10 was found to correlate with a strong feeling of intoxication. It also matched with a significant decrease in the willingness to drive, and it matched also with a significant impairment in tracking performances. The mathematic model II proposed by Huestis et al. (1992) provided at best a rough estimate of the time of oral administration with 27% of actual values being out of range of the 95% confidence interval. The sum of THC and 11-OH-THC blood concentrations provided a better estimate of impairment than THC alone. This controlled clinical study points out the negative influence on fitness to drive after medium or high dose oral THC or dronabinol.

Journal Article.  0 words. 

Subjects: Medical Toxicology ; Toxicology (Non-medical)

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.