Journal Article

Hormonal influence on photocontrol of the protandry in the genus <i>Helianthus</i>

G. Lobello, M. Fambrini, R. Baraldi, B. Lercari and C. Pugliesi

in Journal of Experimental Botany

Volume 51, issue 349, pages 1403-1412
Published in print August 2000 | ISSN: 0022-0957
Published online August 2000 | e-ISSN: 1460-2431 | DOI: http://dx.doi.org/10.1093/jexbot/51.349.1403
Hormonal influence on photocontrol of the protandry in the genus Helianthus

More Like This

Show all results sharing this subject:

  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Under natural photoperiodic conditions protandry in hermaphrodite disc flowers of sunflower (Helianthus annuus L.) is determined by the different elongation rates of the style and filaments. The elongation of the filament and style starts simultaneously after the daily dark period, but the style growth rate is slower. When plants close to anthesis are exposed to continuous white light (WL) a loss of protandry occurs: the filaments do not grow far enough to extrude the anthers from the corolla. The histological analyses show that the number of filament epidermal cells remains unaltered after organ elongation and that cells respond to photoperiod only by cell expansion. Emasculation does not substantially inhibit filament cell expansion, whereas isolation of the filament or stamen from the corolla suggests that this organ could be the perception site of the filament growth stimulus. In vitro treatments with auxin (indole‐3‐acetic acid, IAA or α‐naphthaleneacetic acid, NAA) reverses the inhibition of cell expansion caused by continuous WL, whereas gibberellic acid (GA3) at high concentrations reproduces the effect of continuous WL. Experiments carried out on various Helianthus spp. show that all these plants have evolved the same photo‐ and hormonal‐control of the protandry. In experiments in which the light treatments were continued for 24 h, the auxins drastically reduced the inhibiting effect of red light (R) and dichromatic treatments FR (far red)+R, whereas GA3 repressed filament extension regardless of light quality. As far as auxins are concerned, the response of sunflower filaments does not appear to be connected with the polar transport of the hormone. Moreover, the promoting effect of darkness is not mediated by an increase of endogenous free IAA in disc flowers. However, sunflower filaments manifested a similar temporal pattern of response to the light/dark cycle and to auxin.

Keywords: Anthesis; auxins; gibberellic acid; filament; protandry.

Journal Article.  6842 words.  Illustrated.

Subjects: Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.