Journal Article

Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit

Joseph G. Dubouzet, Atsushi Ishihara, Fumio Matsuda, Hisashi Miyagawa, Hiroyoshi Iwata and Kyo Wakasa

in Journal of Experimental Botany

Published on behalf of Society for Experimental Biology

Volume 58, issue 12, pages 3309-3321
Published in print September 2007 | ISSN: 0022-0957
Published online September 2007 | e-ISSN: 1460-2431 | DOI:

More Like This

Show all results sharing this subject:

  • Plant Sciences and Forestry


Show Summary Details


Transgenic rice plants overexpressing a mutant rice gene for anthranilate synthase alpha subunit (OASA1D) accumulate large amounts of free tryptophan (Trp) with few adverse effects on the phenotype, except for poor germination and weak seedling growth. Metabolic profiling of 8-d-old seedlings of Nipponbare and two high-Trp lines, HW1 and HW5, by high performance liquid chromatography-photo diode array (HPLC-PDA) confirmed that, relative to Nipponbare, only the peak attributed to Trp was significantly changed in the profiles of the OASA1D lines. More detailed and targeted analysis using HPLC coupled with tandem mass spectrometry revealed that the OASA1D lines had higher levels of anthranilate, tryptamine, and serotonin than Nipponbare, but these metabolites were at much lower levels than free Trp. The levels of phenylalanine (Phe) and tyrosine (Tyr) were not affected by the overproduction of Trp. Transcriptomic analysis by microarray validated by quantitative Real-Time PCR (qRT-PCR) revealed that at least 12 out of 21 500 genes showed significant differential expression among genotypes. Except for the OASA1D transgene and a putative IAA β-glucosyltransferase, these were not related to Trp metabolism. Most importantly, the overexpression of the OASA1D and the consequent accumulation of Trp in these lines had little effect on the overall transcriptome, consistent with the minimal effects on growth and the metabolome. Integrated analysis of the metabolome and transcriptome of these OASA1D transgenic lines indicates that the over-accumulation of free Trp may be partly due to the low activity of Trp decarboxylase or other metabolic genes that directly utilize Trp as a substrate.

Keywords: Metabolic profiling; microarray analysis; OASA1D; Oryza sativa; tryptophan

Journal Article.  6278 words.  Illustrated.

Subjects: Plant Sciences and Forestry

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.