Journal Article

Mastering ectomycorrhizal symbiosis: the impact of carbohydrates

Uwe Nehls

in Journal of Experimental Botany

Published on behalf of Society for Experimental Biology

Volume 59, issue 5, pages 1097-1108
Published in print March 2008 | ISSN: 0022-0957
Published online February 2008 | e-ISSN: 1460-2431 | DOI: http://dx.doi.org/10.1093/jxb/erm334
Mastering ectomycorrhizal symbiosis: the impact of carbohydrates

More Like This

Show all results sharing this subject:

  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to ∼19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized.

Keywords: Carbohydrate metabolism; ectomycorrhiza; fungi; soil; symbiosis; transport

Journal Article.  7038 words.  Illustrated.

Subjects: Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.