Journal Article

Interaction study of MADS-domain proteins in tomato

Charles H. Leseberg, Christie L. Eissler, Xiang Wang, Mitrick A. Johns, Melvin R. Duvall and Long Mao

in Journal of Experimental Botany

Published on behalf of Society for Experimental Biology

Volume 59, issue 8, pages 2253-2265
Published in print May 2008 | ISSN: 0022-0957
Published online May 2008 | e-ISSN: 1460-2431 | DOI:

More Like This

Show all results sharing this subject:

  • Plant Sciences and Forestry


Show Summary Details


MADS-domain proteins are important transcription factors involved in many biological processes of plants. Interactions between MADS-domain proteins are essential for their functions. In tomato (Solanum lycopersicum), the number of MIKCc-type MADS-domain proteins identified has totalled 36, but a large-scale interaction assay is lacking. In this study, 22 tomato MADS-domain proteins were selected from six functionally important subfamilies of the MADS-box gene family, to create the first large-scale tomato protein interaction network. Compared with Arabidopsis and petunia (Petunia hybrida), protein interaction patterns in tomato displayed both conservation and divergence. The majority of proteins that can be identified as putative orthologues exhibited conserved interaction patterns, and modifications were mostly found in genes underlining traits unique to tomato. JOINTLESS and RIN, characterized for their roles in abscission zone development and fruit ripening, respectively, showed enlarged interaction networks in comparison with their Arabidopsis and petunia counterparts. Novel interactions were also found for members of the expanded subfamilies, such as those represented by AP1/FUL and AP3/PI MADS-domain proteins. In search for higher order complexes, TM5 was found to be the preferred bridge among the five SEP-like proteins. Additionally, 16 proteins with the MADS-domain removed were used to assess the role of the MADS-domain in protein–protein interactions. The current work provides important knowledge for further functional and evolutionary study of the MADS-box genes in tomato.

Keywords: Flower development; higher order complexes; MADS-domain proteins; protein–protein interaction; tomato; yeast two-hybrid

Journal Article.  7644 words.  Illustrated.

Subjects: Plant Sciences and Forestry

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.