Journal Article

Multi-substrate flavonol <i>O</i>-glucosyltransferases from strawberry (<i>Fragaria×ananassa</i>) achene and receptacle

Markus Griesser, Florian Vitzthum, Barbara Fink, Mari Luz Bellido, Constanze Raasch, Juan Munoz-Blanco and Wilfried Schwab

in Journal of Experimental Botany

Published on behalf of Society for Experimental Biology

Volume 59, issue 10, pages 2611-2625
Published in print July 2008 | ISSN: 0022-0957
Published online May 2008 | e-ISSN: 1460-2431 | DOI: http://dx.doi.org/10.1093/jxb/ern117

Show Summary Details

Preview

In an effort to characterize fruit ripening-related genes functionally, two glucosyltransferases, FaGT6 and FaGT7, were cloned from a strawberry (Fragaria×ananassa) cDNA library and the full-length open reading frames were amplified by rapid amplification of cDNA ends. FaGT6 and FaGT7 were expressed heterologously as fusion proteins in Escherichia coli and target protein was purified using affinity chromatography. Both recombinant enzymes exhibited a broad substrate tolerance in vitro, accepting numerous flavonoids, hydroxycoumarins, and naphthols. FaGT6 formed 3-O-glucosides and minor amounts of 7-O-, 4′-O-, and 3′-O-monoglucosides and one diglucoside from flavonols such as quercetin. FaGT7 converted quercetin to the 3-O-glucoside and 4′-O-glucoside and minor levels of the 7- and 3′-isomers but formed no diglucoside. Gene expression studies showed that both genes are strongly expressed in achenes of small-sized green fruits, while the expression levels were generally lower in the receptacle. Significant levels of quercetin 3-O-, 7-O-, and 4′-O-glucosides, kaempferol 3-O- and 7-O-glucosides, as well as isorhamnetin 7-O-glucoside, were identified in achenes and the receptacle. In the receptacle, the expression of both genes is negatively controlled by auxin which correlates with the ripening-related gene expression in this tissue. Salicylic acid, a known signal molecule in plant defence, induces the expression of both genes. Thus, it appears that FaGT6 and FaGT7 are involved in the glucosylation of flavonols and may also participate in xenobiotic metabolism. The latter function is supported by the proven ability of strawberries to glucosylate selected unnatural substrates injected in ripe fruits. This report presents the first biochemical characterization of enzymes mainly expressed in strawberry achenes and provides the foundation of flavonoid metabolism in the seeds.

Keywords: Achenes; detoxification; flavonols; Fragaria×ananassa; multisubstrate glucosyltransferase; plant defence; salicylic acid; strawberry; xenobiotics

Journal Article.  9031 words.  Illustrated.

Subjects: Plant Sciences and Forestry

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.