Journal Article

Rad52 SUMOylation affects the efficiency of the DNA repair

Veronika Altmannova, Nadine Eckert-Boulet, Milica Arneric, Peter Kolesar, Radka Chaloupkova, Jiri Damborsky, Patrick Sung, Xiaolan Zhao, Michael Lisby and Lumir Krejci

in Nucleic Acids Research

Volume 38, issue 14, pages 4708-4721
Published in print August 2010 | ISSN: 0305-1048
Published online April 2010 | e-ISSN: 1362-4962 | DOI: http://dx.doi.org/10.1093/nar/gkq195

More Like This

Show all results sharing these subjects:

  • Chemistry
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Genetics and Genomics
  • Molecular and Cell Biology

GO

Show Summary Details

Preview

Homologous recombination (HR) plays a vital role in DNA metabolic processes including meiosis, DNA repair, DNA replication and rDNA homeostasis. HR defects can lead to pathological outcomes, including genetic diseases and cancer. Recent studies suggest that the post-translational modification by the small ubiquitin-like modifier (SUMO) protein plays an important role in mitotic and meiotic recombination. However, the precise role of SUMOylation during recombination is still unclear. Here, we characterize the effect of SUMOylation on the biochemical properties of the Saccharomyces cerevisiae recombination mediator protein Rad52. Interestingly, Rad52 SUMOylation is enhanced by single-stranded DNA, and we show that SUMOylation of Rad52 also inhibits its DNA binding and annealing activities. The biochemical effects of SUMO modification in vitro are accompanied by a shorter duration of spontaneous Rad52 foci in vivo and a shift in spontaneous mitotic recombination from single-strand annealing to gene conversion events in the SUMO-deficient Rad52 mutants. Taken together, our results highlight the importance of Rad52 SUMOylation as part of a ‘quality control’ mechanism regulating the efficiency of recombination and DNA repair.

Journal Article.  8139 words.  Illustrated.

Subjects: Chemistry ; Biochemistry ; Bioinformatics and Computational Biology ; Genetics and Genomics ; Molecular and Cell Biology

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.