Journal Article

A TetR-like regulator broadly affects the expressions of diverse genes in <i>Mycobacterium smegmatis</i>

Min Yang, Chunhui Gao, Tao Cui, Jingning An and Zheng-Guo He

in Nucleic Acids Research

Volume 40, issue 3, pages 1009-1020
Published in print February 2012 | ISSN: 0305-1048
Published online October 2011 | e-ISSN: 1362-4962 | DOI: http://dx.doi.org/10.1093/nar/gkr830

More Like This

Show all results sharing these subjects:

  • Chemistry
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Genetics and Genomics
  • Molecular and Cell Biology

GO

Show Summary Details

Preview

Transcriptional regulation plays a critical role in the life cycle of Mycobacterium smegmatis and its related species, M. tuberculosis, the causative microbe for tuberculosis. However, the key transcriptional factors involved in broad regulation of diverse genes remain to be characterized in mycobacteria. In the present study, a TetR-like family transcriptional factor, Ms6564, was characterized in M. smegmatis as a master regulator. A conserved 19 bp-palindromic motif was identified for Ms6564 binding using DNaseI footprinting and EMSA. A total of 339 potential target genes for Ms6564 were further characterized by searching the M. smegmatis genome based on the sequence motif. Notably, Ms6564 bound with the promoters of 37 cell cycle and DNA damage/repair genes and regulated positively their expressions. The Ms6564-overexpressed recombinant strain yielded 5-fold lower mutation rates and mutation frequencies, whereas deletion of Ms6564 resulted in ∼5-fold higher mutation rates for the mutant strain compared with the wild-type strain. These findings suggested that Ms6564 may function as a global regulator and might be a sensor necessary for activation of DNA damage/repair genes.

Journal Article.  6763 words.  Illustrated.

Subjects: Chemistry ; Biochemistry ; Bioinformatics and Computational Biology ; Genetics and Genomics ; Molecular and Cell Biology

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.