Biological Chaos and Complex Dynamics

David A. Vasseur

in Ecology

ISBN: 9780199830060
Published online May 2012 | | DOI:
Biological Chaos and Complex Dynamics

More Like This

Show all results sharing these subjects:

  • Applied Ecology (Environmental Science)
  • Ecology and Conservation
  • Plant Ecology
  • Zoology and Animal Sciences


Show Summary Details


Classically, chaos is defined as a lack of order; however, in a scientific context it refers to the lack of predictability of a process or sample. Chaos differs from randomness in that chaotic systems are purely deterministic; that is, they are entirely determined by a set of mathematical formulas and initial conditions, with no random elements involved. Particularly intriguing is that chaotic systems are especially sensitive to initial conditions; simulations of a chaotic system initiated at only slightly different states will quickly diverge so that predicting the state of one iteration of the chaotic system from a second is not possible. This lack of predictability is the origin of the term “butterfly effect,” which was made famous by the meteorologist Edward N. Lorenz in his talk “Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?” In addition to chaos, other forms of complex dynamics, such as regular oscillations and quasiperiodic oscillations, are preeminent features of many biological systems. Recognition of these types of dynamics came first from early observations on economically important species, such as fish and small mammals, and soon after from mathematical models that ecologists used to understand the basic processes of population demography. Early evidence for chaos and complex dynamics challenged the classical notion that ecological systems are dominated by equilibrium-based processes (a “natural” or reference state of the system to which it would return if left unperturbed by the external influence of humans, climate, and so on) and raised great skepticism about our ability to accurately predict the fate of populations for conservation and management. Although there is considerable challenge discerning chaos and complex dynamics from noisy equilibrium-based dynamics, the former has come to be accepted as a viable but (in most instances) rare population attribute. The intense study of these subjects during the 1980s and 1990s has given biologists and ecologists an increased awareness of when and where to expect chaos and complex dynamics. Research in the early 2000s has focused less on the identification of these patterns in real data and experiments and more on the reasons why natural systems seem to exhibit more simple and stable dynamics than many models predict.

Article.  10098 words. 

Subjects: Applied Ecology (Environmental Science) ; Ecology and Conservation ; Plant Ecology ; Zoology and Animal Sciences

Full text: subscription required

How to subscribe Recommend to my Librarian

Buy this work at Oxford University Press »

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.