Alistair Seddon

in Ecology

ISBN: 9780199830060
Published online May 2012 | | DOI:

More Like This

Show all results sharing these subjects:

  • Applied Ecology (Environmental Science)
  • Ecology and Conservation
  • Plant Ecology
  • Zoology and Animal Sciences


Show Summary Details


Paleoecology, the ecology of the past, uses geological and biological evidence from fossil deposits to investigate the past occurrence, distribution, and abundance of different ecological units (species, populations, and communities) on a variety of timescales. Although it can be studied in any period of the Earth’s history, paleoecologists are mainly concerned with investigating past ecosystem dynamics over the Quaternary period (the last 2.58 million years), as vast ice sheets cyclically expanded and contracted from the polar regions in response to small variations in the configurations of the Earth’s orbit. The field is multidisciplinary in nature: researchers combine techniques from paleontology, sedimentology, and geochemistry in order to reconstruct past environmental dynamics and to investigate biotic responses to environmental change. While deep-time paleoecologists use fossils from pre-Quaternary sediments, the majority of paleoecological research is concerned with biotic changes for approximately the last 20,000 years, when the age of sediments can be accurately determined using radiocarbon dating. Therefore, texts relating to Quaternary paleoecology are the major focus of this article. There have been major advances in the discipline of Quaternary paleoecology since the late 19th century, when the early pioneers observed fossilized tree stumps preserved in the peat deposits of northern Europe, thus inferring evidence of past climate change. Today, the use of paleoecological data is divided in two ways: paleoecological reconstructions, a descriptive approach in which paleoecological data are used as a tool to reconstruct past landscapes, ecosystems, and environments; and ecological paleoecology, in which ecological hypotheses are tested in order to understand the mechanisms of the observed changes. Both are characterized by increased sophistication, precision, and accuracy over time. More recently, the Quaternary paleoecological record has been applied to helping solve major issues faced by the accelerated global changes of the twenty-first century. By identifying ecological thresholds and allowing “natural” rates of change to be established, ecological “baselines” can be identified for conservation, while fossil evidence can be used to investigate past analogues of change and to train Earth system models. The new developments in paleoecology ensure that it remains an important, hypothesis-driven science that continues to remain relevant in the present day. The author thanks Ambroise Baker, Rick Battarbee, John Birks, Catherine Downy, Anson Mackay, and Gavin Simpson for their helpful contributions to earlier versions of this article.

Article.  15948 words. 

Subjects: Applied Ecology (Environmental Science) ; Ecology and Conservation ; Plant Ecology ; Zoology and Animal Sciences

Full text: subscription required

How to subscribe Recommend to my Librarian

Buy this work at Oxford University Press »

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.