Overview

agglomerative clustering methods


'agglomerative clustering methods' can also refer to...

 

More Like This

Show all results sharing this subject:

  • Probability and Statistics

GO

Show Summary Details

Quick Reference

Methods for grouping multivariate data into clusters. Suppose there are n data items. The agglomerative clustering methods start by regarding these as n separate clusters of size 1. The two clusters judged closest together (on some criterion) are then merged to reduce the number of clusters to (n−1). This procedure could be continued until all the items would be collected into a single cluster.

The three simplest criteria are as follows. In single linkage clustering the distance between two clusters is defined as the least distance between an item in one cluster and an item in the other cluster. In complete linkage clustering, by contrast, the distance between two clusters is defined as the greatest distance between an item in one cluster and an item in the other cluster. As a compromise, group-average clustering uses the average of the distances between every member of one cluster and every member of the other cluster. The process of agglomeration is often represented using a dendrogram. See also distance measure; Ward's method.

Agglomerative clustering methods. Examples of the distance definitions used in clustering.

Subjects: Probability and Statistics.


Reference entries

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.