Show Summary Details

## Quick Reference

If **A** is a square matrix, with real or complex elements, a matrix norm |**A**| is a non-negative number with the properties that|**A**|>0 if **A** ≠ 0, and |**A**|=0 if **A**=0|*k***A**|=*k*|**A**| for any positive scalar *k*,|**A**+**B**|≤|**A**|+|**B**|,|**AB**|≤|**A**|×|**B**|.

|**A**|>0 if **A** ≠ 0, and |**A**|=0 if **A**=0

|*k***A**|=*k*|**A**| for any positive scalar *k*,

|**A**+**B**|≤|**A**|+|**B**|,

|**AB**|≤|**A**|×|**B**|.

*Subjects:*
Mathematics.

## Related content in Oxford Index

##### Reference entries

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.