Journal Article

Clinorotation Affects Morphology and Ethylene Production in Soybean Seedlings

Emmanuel Hilaire, Barbara V. Peterson, James A. Guikema and Christopher S. Brown

in Plant and Cell Physiology

Published on behalf of Japanese Society of Plant Physiologists

Volume 37, issue 7, pages 929-934
Published in print October 1996 | ISSN: 0032-0781
e-ISSN: 1471-9053 | DOI: http://dx.doi.org/10.1093/oxfordjournals.pcp.a029041
Clinorotation Affects Morphology and Ethylene Production in Soybean Seedlings

More Like This

Show all results sharing these subjects:

  • Biochemistry
  • Molecular and Cell Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

The microgravity environment of spaceflight influences growth, morphology and metabolism in etiolated germinating soybean. To determine if clinorotation will similarly impact these processes, we conducted ground-based studies in conjunction with two space experiment opportunities. Soybean (Glycine max [L.] Merr.) seeds were planted within BRIC (Biological Research In Canister) canisters and grown for seven days at 20°C under clinorotation (1 rpm) conditions or in a stationary upright mode. Gas samples were taken daily and plants were harvested after seven days for measurement of growth and morphology. Compared to the stationary upright controls, plants exposed to clinorotation exhibited increased root length (125% greater) and fresh weight (42% greater), whereas shoot length and fresh weight decreased by 33% and 16% respectively. Plants grown under clinorotation produced twice as much ethylene as the stationary controls. Seedlings treated with triiodo benzoic acid (TIBA), an auxin tranport inhibitor, under clinorotation produced 50% less ethylene than the untreated control subjected to the same gravity treatment, whereas a treatment with 2,4-D increased ethylene by five-fold in the clinorotated plants. These data suggest that slow clinorotation influences biomass partitioning and ethylene production in etiolated soybean plants.

Keywords: Auxin; Clinostat; Ethylene; Glycine max L.; Gravity; Partitioning

Journal Article.  0 words. 

Subjects: Biochemistry ; Molecular and Cell Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.